Enhanced selectivity in non-heme iron catalysed oxidation of alkanes with peracids: evidence for involvement of Fe(IV)=O species.

نویسندگان

  • Tieme A van den Berg
  • Johannes W de Boer
  • Wesley R Browne
  • Gerard Roelfes
  • Ben L Feringa
چکیده

Catalytic alkane oxidation with high selectivity using peracids and an (N4Py)Fe complex is presented and the role of [(N4Py)Fe(IV)=O]2+ species, molecular oxygen and hydroxyl radicals in the catalysis is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observation of a ferric hydroperoxide complex during the non-heme iron catalysed oxidation of alkenes and alkanes by O2.

A non-heme iron complex catalyses the oxidation of allylic, benzylic, and aliphatic C-H bonds by O(2). During this reactivity, a ferric hydroperoxide species is observed. The kinetic analysis of this complex's formation may suggest a ferric superoxo species as the initial metal-based oxidant.

متن کامل

Reaction of ferric cytochrome P450cam with peracids: kinetic characterization of intermediates on the reaction pathway.

Reactions of substrate-free ferric cytochrome P450cam with peracids to generate Fe=O intermediates have previously been investigated with contradictory results. Using stopped-flow spectrophotometry, the reaction with m-chloroperoxybenzoic acid demonstrated an Fe(IV)=O + porphyrin pi-cation radical (Cpd I) (Egawa, T., Shimada, H., and Ishimura, Y. (1994) Biochem. Biophys. Res. Commun. 201, 1464-...

متن کامل

Modeling non-heme iron proteins.

Synthetic modeling studies of non-heme iron proteins continue to contribute to our understanding of the mechanism of these proteins. Recently, mononuclear Fe(IV)=O complexes have been prepared and characterized to model the same species that are proposed to be the reactive intermediates in reactions involving mononuclear non-heme iron proteins. Generation of such species for the oxidation of or...

متن کامل

Mononuclear Non-Heme Fe(IV)=O Systems: Electronic Structures and Comparison to Heme and Copper Species

Mononuclear non-heme iron enzymes catalyze a variety of biological reactions requiring the binding and activation of dioxygen. Using spectroscopic methods and density functional calculations, the geometric and electronic structures of the oxygen intermediates and their reactivities are being defined to understand the catalytic mechanisms on a molecular level. A key intermediate is the Fe(IV)=O ...

متن کامل

Dioxygen activation and catalytic aerobic oxidation by a mononuclear nonheme iron(II) complex.

We have used dioxygen, not artificial oxidants such as peracids, iodosylarenes, and hydroperoxides, in the generation of a mononuclear nonheme oxoiron(IV) complex, [Fe(IV)(TMC)(O)]2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), from its corresponding Fe(II) complex, [Fe(TMC)(CF3SO3)2]. The formation of oxoiron(IV) species by activating dioxygen was markedly dependent on iron(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical communications

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2004